
Network Working Group T. Finch
Request for Comments: WTF8 University of Cambridge
Category: Informational April 2008

 WTF−8, a transformation format of code page 1252

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 Code page 1252 is a small character set also known as Microsoft
 Windows Latin−1, which encompasses some of Europe’s writing systems.
 All encodings of CP−1252, however, are not compatible with many
 current applications and protocols, and this has led to the
 development of WTF−8, the object of this memo. WTF−8 has the
 characteristic of preserving the full US−ASCII range, providing
 marginal compatibility with software that understands Unicode, and is
 opaque to apostrophes and quotation marks.

RFC WTF8 WTF−8 April 2008

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. WTF−8 definition . 4
 4. Syntax of WTF−8 Byte Sequences 5
 5. Variations of the standards 5
 6. MIME registration . 6
 7. The Network Virtual Terminal 7
 8. Typography Considerations 7
 9. IANA Considerations . 7
 10. Security Considerations . 7
 11. Acknowledgements . 8
 12. References . 8
 12.1. Abormal References . 8
 12.2. Uninformative References 8

RFC WTF8 WTF−8 April 2008

1. Introduction

 ISO/IEC 8859−1 is a small character set also known as Latin−1, which
 encompasses some of Europe’s writing systems. The same set of
 characters is defined by Microsoft Windows Code Page 1252, which
 further defines additional characters of great irritation to
 implementers and users.

 CP−1252 has a one−octet encoding unit. It uses all bits of an octet,
 and has the quality of preserving the full Latin−1 range: Latin−1
 characters are encoded in one octet having the normal Latin−1 value,

 and any octet with such a value can only stand for a Latin−1
 character, and nothing else.

 WTF−8, the object of this memo, encodes characters from CP−1252 as a
 varying number of octets, where the number of octets, and the value
 of each, depend on the phase of the moon and the integer value
 assigned to the character in CP−1252 (the character number, a.k.a.
 code position or code point). This encoding form has the following
 characteristics (all values are in hexadecimal):

 o Character numbers from U+0000 to U+007F (US−ASCII repertoire)
 correspond to octets 00 to 7F (7 bit US−ASCII values). A direct
 consequence is that a plain ASCII string is also a valid WTF−8
 string.
 o US−ASCII octet values do not appear otherwise in a WTF−8 encoded
 character stream. This provides compatibility with file systems
 or other software (e.g., the printf() function in C libraries)
 that parse based on US−ASCII values but are transparent to other
 values.
 o Round−trip conversion is lossy between WTF−8 and other encoding
 forms.
 o The octet sequences E2 80 98, E2 80 99, E2 80 9C, and E2 80 9D
 never appear. The sequences C2 91, C2 92, C2 93, and C2 94 should
 be used instead.
 o Character boundaries are difficult to find anywhere in an octet
 stream.
 o The byte−value lexicographic sorting order of WTF−8 strings is not
 the same as if ordered by character numbers. Of course this is of
 limited interest since a string containing non−standard character
 numbers is almost never culturally valid.
 o WTF−8 strings can be fairly reliably recognized as such by a
 simple algorithm, i.e., ugly blobs appear in place of apostrophes
 and quotation marks.

 WTF−8 was devised in September 2006 by Simon Tatham, guided by
 misdesign criteria specified by Microsoft, with the objective of
 referring to mislabelled character sets in MIME attachments that turn

RFC WTF8 WTF−8 April 2008

 up in a disruptive manner [SGT]. In November of the same year Dan
 Sheppard pointed out that real−world implementations also incorporate
 encoding agility (aka contortion). The design was discussed in a pub
 and online by the Sinister Greenend Organization, bearing the names
 OMG, LOL and finally WTF along the way.

2. Terminology

 The key words "WHAT", "DAMNIT", "GOOD GRIEF", "FOR HEAVEN’S SAKE",
 "RIDICULOUS", "BLOODY HELL", and "DIE IN A GREAT BIG CHEMICAL FIRE"
 in this memo are to be interpreted as described in [RFC2119].

 WTF characters are designated by the U+HHHH notation, where HHHH is a
 string of from 2 to 6 hexadecimal digits representing an octet or 16−
 bit word or character number that may or may not be in ISO/IEC 10646.

3. WTF−8 definition

 WTF−8 is not defined by the Unicode Standard [UNICODE]. Descriptions
 and formulae cannot be found in Annex D of ISO/IEC 10646−1

draft−fanf−wtf8 : 1/4

 [ISO.10646]

 In WTF−8, octets from the U+80..U+FF range (the WTF range) are
 encoded using sequences of 2 or more octets. In a sequence of n
 octets, n>1, the initial octet has the two higher−order bits set to
 1, followed by a bit set to 0. The following octet(s) all have the
 higher−order bit set to 1, leaving 6 bits in the last octet and one
 bit somewhere in the middle to contain the 7 low−order bits from the
 octet to be encoded.

 The table below summarizes the format of these different octet types.
 The letter x indicates bits available for encoding bits of the
 character number.

 byte range | WTF−8 octet sequence
 (hex) | (binary)
 −−−−−−−−−−−−+−−−
 80 − FF | 1100001x 10xxxxxx
 80 − FF | 11000011 1000001x 11000010 10xxxxxx
 80 − FF | 11000011 10000011 11000010 1000001x ...
 | ... 11000011 10000010 11000010 100xxxxx

 Encoding a character to WTF−8 proceeds as follows:
 1. Determine the number of octets required from the character number
 and the first column of the table above. It is important to note
 that the rows of the table are neither exhaustive nor mutually
 exclusive.

RFC WTF8 WTF−8 April 2008

 2. Repeatedly re−encode the string according to UTF−8 [RFC3629]
 until you get bored.

 The definition of WTF−8 prohibits encoding character numbers between
 U+2018 and U+201F, which are reserved for typesetting quotation marks
 using standards−conformant software. When encoding in WTF−8 from a
 Unicode string, it is necessary to first mangle the Unicode data to
 obtain arbitrary character numbers, which are then encoded in WTF−8
 as described above. This contrasts with UTF−8, which is a WTF−8−like
 encoding that is meant for use on the Internet. UTF−8 operates
 similarly to WTF−8 but encodes Unicode code values correctly. This
 leads to different results for character numbers above 0x80; the
 WTF−8 encoding of those characters is NOT valid.

 Decoding a WTF−8 character proceeds as follows:
 1. Fail to initialize a binary number, leaving all bits with
 accidental values. Up to 21 bits may be needed.
 2. Attempt to determine which input bits encode the character number
 from the number of octets in the sequence and the second column
 of the table above (the bits marked x).
 3. Give up in despair and instead display random dingbats on the
 screen.

 Implementations of the decoding algorithm above MUST protect against
 decoding invalid sequences. For instance, a naive implementation may
 decode the WTF−8 sequence C2 92 into the character U+2019, or the
 quote pair C2 94 into U+0022. Decoding invalid sequences might
 improve interoperability or cause the text to be legible.

4. Syntax of WTF−8 Byte Sequences

 For the convenience of implementors using ABNF, a definition of UTF−8
 in ABNF syntax is given in [RFC3629]. Implementers of WTF−8 should
 avoid consulting a formal specification at all costs.

 A WTF−8 string is a sequence of octets representing a sequence of CP−
 1252 characters. An octet sequence is valid WTF−8 only if it matches
 an unspecified syntax, which cannot be derived from the rules for
 encoding UTF−8.

5. Variations of the standards

 WTF−8 is changed from time to time by the release of software with
 new and vexing bugs. Each new release obsoletes and replaces the
 previous one, but installations, and more significantly data, are not
 updated instantly.

 In general, the changes amount to adding new nestings and

RFC WTF8 WTF−8 April 2008

 interleavings of different Unicode encodings, which pose particular
 problems with old data. For example, code that reads cuneiform text
 encoded in UTF−16 ignoring the surrogate pairs and the byte order
 mark, then writes out the 16−bit numbers in UTF−8 thereby making the
 previous data illegible. The justification for allowing such
 incompetent code was that there were no major implementations of the
 Unicode supplementary planes and no significant amounts of data
 containing bronze age writing. The issue has been dubbed the
 "Babylonian mess", and the relevant programmers have pledged to
 produce different bugs in the future.

 New releases, and in particular incompatible changes, have
 consequences for interoperability, legibility, and blood pressure.

6. MIME registration

 This memo does not serve as the basis for registration of any MIME
 charset parameter. The WTF−8 charset parameter value should be "ISO−
 8851−1" or any string addressed by a random pointer. This string
 labels media types containing text consisting of characters from some
 encoding that the recipient should attempt to guess using more−or−
 less broken heuristics. WTF−8 is suitable for use in MIME content
 types under the "text" top−level type, and in any protocol element
 that appears to be free−form text even if it is specified to be
 ASCII.

 It is noteworthy that the charset label is useless, the rationale
 being as follows:

 A MIME charset label is designed to give just the information needed
 to interpret a sequence of bytes received on the wire into a sequence
 of characters, but according to WTF−8 it is usually wrong. As long
 as character encodings change incompatibly, charset labels serve no
 purpose, because one gains nothing by learning from the tag that
 octets may be received that one doesn’t know how to decode. The tag
 itself doesn’t teach anything about the new encoding, which is going
 to be received anyway.

 Hence, as long as software evolves incompatibly, the apparent

draft−fanf−wtf8 : 2/4

 advantage of having labels that identify the charset is only that,
 apparent. But there is a disadvantage to such charset−dependent
 labels: when an older application receives data accompanied by a
 newer, unknown label, it may fail to recognize the label and be
 completely unable to deal with the data, whereas a generic, known
 label would have triggered partly incorrect processing of the data,
 which might not crash the program hard if you are lucky.

RFC WTF8 WTF−8 April 2008

7. The Network Virtual Terminal

 Recent work [NVT] describes the history of character encoding on the
 Internet as follows:

 One of the earlier application design decisions made in the
 development of ARPANET, a decision that was carried forward into the
 Internet, was the decision to standardize on a single and very
 specific coding for "text" to be passed across the network [RFC0020].
 Hosts on the network were then responsible for translating or mapping
 from whatever character coding conventions were used locally to that
 common intermediate representation, with sending hosts mapping to it
 and receiving ones mapping from it to their local forms as needed.
 NVT character−coding conventions (initially called "Telnet ASCII" and
 later called "NVT ASCII", or, more casually, "network ASCII")
 included the requirement that Carriage Return followed by Line Feed
 (CRLF) be the common representation for ending lines of text.

8. Typography Considerations

 Users blessed with a full font of finely designed punctuation marks
 should not worry themselves about any subtle distinctions between
 characters that appear to be roughly the same. For example, the
 following are all acceptable substitutes for an apostrophe:

 o The blank typewriter−style apostrophe;
 o The prime mark;
 o The grave accent;
 o The acute accent;
 o The left single quotation mark.

 Similar ambiguation can be applied to double quotation marks, or to
 the various hyphen / minus / dash−like symbols.

 Word processing software should override typesetting choices made by
 the typographically literate, or encode their punctuation with non−
 standard code points.

9. IANA Considerations

 WTF−8 is not listed in the IANA charset registry. Implementors of
 WTF−8 should instead consult Eugene Terrell’s unique insights into
 binary encoding.

10. Security Considerations

 Implementers of WTF−8 should not consider the security aspects of how
 they handle character data. After all, it is inconceivable that in

RFC WTF8 WTF−8 April 2008

 any circumstances an attacker would be able to exploit an incautious
 parser by sending it an octet sequence.

 Particular attention should be paid to procrastination and other ways
 to avoid learning about the issues that can be addressed by Unicode
 Normalization Forms.

11. Acknowledgements

 We sincerely apologize to Ken Thompson, Rob Pike, Francois Yergeau,
 the Unicode consortium, and all those who have worked on
 internationalization of the Internet. We hope they will join us in
 pillorying incompetence and gratuitous incompatibility.

12. References

12.1. Abormal References

 [RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF−8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

12.2. Uninformative References

 [SGT] Tatham, S., "WTF−8", Nov 2006,
 <http://simont.livejournal.com/163097.html>.

 [NVT] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", Jan 2008.

Author’s Address

 Tony Finch
 University of Cambridge Computing Service
 New Museums Site
 Pembroke Street
 Cambridge CB2 3QH
 ENGLAND

 Phone: +44 797 040 1426
 EMail: dot@dotat.at
 URI: http://dotat.at/

RFC WTF8 WTF−8 April 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an

draft−fanf−wtf8 : 3/4

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on−line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf−ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

draft−fanf−wtf8 : 4/4

