
SMTP extensions T. Finch
Internet−Draft University of Cambridge
Obsoletes: 1845 (if approved) April 17, 2007
Intended status: Standards Track
Expires: October 19, 2007

 SMTP service extensions for transaction checkpointing
 draft−fanf−smtp−rfc1845bis−01

Status of this Memo

 By submitting this Internet−Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet−Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet−
 Drafts.

 Internet−Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet−Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet−Drafts can be accessed at
 http://www.ietf.org/ietf/1id−abstracts.txt.

 The list of Internet−Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet−Draft will expire on October 19, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This memo describes the SMTP service extension for checkpoint/resume,
 which allows a client to recover from a lost connection to the server
 without having to repeat all of the commands and message content sent
 prior to the interruption, and with less risk of duplicated messages.
 It also includes an updated specification of the predecessor SMTP
 service extension for checkpoint/restart.

Document revision

 $Cambridge: hermes/doc/qsmtp/draft−fanf−smtp−rfc1845bis.xml,v 1.75
 2007/02/06 00:56:44 fanf2 Exp $

Table of Contents

 1. Introduction . 4
 1.1. Overview . 4
 1.2. Terminology . 5
 1.3. IANA Considerations 5
 2. SMTP service extension for checkpoint/resume 6

 2.1. Framework . 6
 2.2. Overview . 7
 2.3. Transaction IDs . 7
 2.4. Octet offsets . 8
 2.5. Server−side resume state 9
 2.6. Retry versus resume 10
 2.7. Re−establishing a connection 10
 2.8. The RESUME command . 11
 2.9. The MAIL command TRANSID and TRANSOFF parameters 12
 2.10. The QUIT command . 13
 3. SMTP service extension for checkpoint/restart 14
 3.1. Framework . 14
 3.2. Description . 14
 3.3. Changes from RFC 1845 16
 3.4. Prefer checkpoint/resume to checkpoint/restart 17
 4. Security considerations 18
 4.1. Server storage . 18
 4.2. Transaction IDs . 19
 4.3. Unnecessary bounces 19
 5. References . 21
 5.1. Normative references 21
 5.2. Informative references 21
 Appendix A. Acknowledgments 23
 Appendix B. Changes since version −00 24
 Appendix C. Draft discussion venue 25
 Author’s Address . 26
 Intellectual Property and Copyright Statements 27

1. Introduction

 Although SMTP is widely and robustly deployed, it does not handle the
 loss of its underlying connection particularly gracefully. There are
 two problems, and they are becoming more of a concern because of the
 way the Internet is changing.

 Firstly, if the connection is lost part−way through the transmission
 of a message, the client must retry the transmission starting from
 the beginning. When dealing with very large messages over less
 reliable connections it is possible for substantial resources to be
 consumed by repeated unsuccessful attempts to transmit the message in
 its entirety. Messages are getting larger on average. Wireless
 connections, which are much more likely to be lost in normal use, are
 becoming more common.

 Secondly, a connection that is lost after the client has transmitted
 the message but before it receives the server’s final reply can
 result in a duplicated message. This problem is described in
 [RFC1047], which recommends that servers should minimize the time
 between receiving the last of the message data and sending their
 final reply. However it is often preferable to analyse the message
 data for spam and viruses at this point so that the server can avoid
 taking responsibility for an undesirable message, and this can be
 time consuming.

 Furthermore, the problem is worse for clients that try to make the
 most of high−latency connections. The minimum time for an SMTP
 transaction is normally one round trip, since the client has to wait
 for all outstanding server replies after sending the DATA command
 [RFC2920]. If the client’s messages are smaller than the amount of
 data it can transmit in a round trip, i.e. the bandwidth*delay

draft−fanf−smtp−rfc1845bis−01 : 1/9

 product, then the connection is sitting idle for some of the time. A
 client can work around this problem by using multiple concurrent SMTP
 connections, or by using the SMTP service extension for large
 messages [RFC3030]. The latter eliminates pipeline stalls so the
 client can stream multiple messages to the server while waiting for
 replies. However, with both work−arounds, one loss of network
 connectivity means multiple messages will need retransmission and may
 be duplicated.

1.1. Overview

 This memo provides a facility by which a client can uniquely identify
 a particular SMTP transaction. The server stores this identifying
 information along with all the information it receives and sends as
 the transaction proceeds. If the connection is lost during the
 transaction the SMTP client may establish a new connection and ask

 the server to resume the transaction. The server tells the client
 how much message data it saved from the interrupted transaction. The
 client can then perform an abbreviated transaction, repeating only
 those commands to which it did not receive replies, and transmitting
 only message data that the server does not yet have.

 These problems were originally tackled by the SMTP service extension
 for checkpoint/restart [RFC1845]. However it has a number of
 limitations (Section 3.3) so this memo describes the similar but
 improved SMTP service extension for checkpoint/resume in Section 2.
 We address backwards compatibility in Section 3 by re−defining
 checkpoint/restart as a modification of checkpoint/resume. Finally,
 Section 4 gives proper consideration to the security implications of
 these extensions.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

 The "message envelope" comprises the SMTP MAIL and RCPT commands.
 The "message data" is transmitted using the SMTP DATA command, or
 alternatives such as the BDAT command [RFC3030].

 An SMTP "transaction" is the sequence of commands necessary to
 transmit a message, i.e. a message envelope followed by message data.
 It starts with a MAIL command and ends with the server’s "final
 reply" to the last of the message data, or with a reset. The
 server’s final reply in an LMTP (local mail transport protocol)
 transaction can comprise more than one per−recipient sub−reply
 [RFC2033]. A "reset" is caused by the RSET, HELO, or EHLO commands.

 The metalinguistic notation used in this memo corresponds to the
 "Augmented Backus−Naur Form" defined in [RFC4234]. Rules not defined
 here are either defined in the ABNF core rules or in [RFC2821] or
 [RFC2822]. Metalanguage terms used in running text are surrounded by
 pointed brackets (e.g., <transid−spec>).

1.3. IANA Considerations

 This memo defines the SMTP service extension for checkpoint/resume,
 with the EHLO keyword value "RESUME", in Section 2.

 This memo replaces RFC 1845 as the definition of the SMTP service
 extension for checkpoint/restart, with the EHLO keyword value
 "CHECKPOINT", in Section 3.

2. SMTP service extension for checkpoint/resume

 This section uses the SMTP extension model specified in [RFC2821].

2.1. Framework

 The SMTP service extension for checkpoint/resume is defined as
 follows:

 o The name of the service extension is "checkpoint/resume".

 o The EHLO keyword associated with the extension is "RESUME".

 o The RESUME EHLO keyword has no parameters.

 o This extension defines one additional command, RESUME, which MAY
 appear anywhere in a pipelined group [RFC2920].

 Syntax:

 resume−command = "RESUME" SP transid−value CRLF

 o This extension defines the 355 reply to the RESUME command.

 Syntax:

 resume−reply = "355" SP octet−offset SP text CRLF

 o This extension defines two additional parameters to the MAIL
 command.

 The TRANSID parameter has the following syntax:

 esmtp−param =/ transid−param
 transid−param = "TRANSID=" transid−value
 transid−value = "<" transid−spec ">"
 transid−spec = dot−string "@" domain

 The TRANSOFF parameter has the following syntax:

 esmtp−param =/ transoff−param
 transoff−param = "TRANSOFF=" octet−offset
 octet−offset = 1*20DIGIT

 o The maximum length of the MAIL command is increased by 297
 characters. The maximum length of a <transid−spec> is 256
 characters.

 o There are no additional parameters to the RCPT command defined by
 this extension and its maximum length is not increased.

 o This extension is suitable for use with message submission
 [RFC4409] and LMTP [RFC2033].

2.2. Overview

draft−fanf−smtp−rfc1845bis−01 : 2/9

 A server that supports the SMTP service extension for checkpoint/
 resume SHALL include the RESUME keyword in its reply to the client’s
 EHLO command. A client that wishes to use this extension MUST first
 check that this EHLO keyword is present.

 The client then proceeds as usual, except that it issues MAIL
 commands with TRANSID and TRANSOFF parameters (Section 2.9). The
 TRANSID parameter’s value is described in Section 2.3 and the
 TRANSOFF parameter’s value is "0" (zero). The server periodically
 checkpoints the transaction, retaining state so that it can later be
 resumed (Section 2.5). If all goes well, the client will close the
 connection normally and the server can discard the resume state
 (Section 2.10).

 If the connection is lost (Section 2.6) then the client can reconnect
 (Section 2.7) and issue a RESUME command (Section 2.8) for each
 transaction in the lost connection. It thereby discovers the <octet−
 offset> at which it must resume transmitting each transaction’s data
 (Section 2.4). The client then issues MAIL commands with TRANSID and
 non−zero TRANSOFF parameters to resume any transactions that are
 missing data on the server or for which the client lost any of the
 server’s replies.

2.3. Transaction IDs

 A <transid−spec> serves to uniquely identify a particular SMTP
 transaction started by a particular client. The <transid−spec> and
 client identity together form the "transaction ID".

 The <transid−spec> is structured to ensure global uniqueness without
 any additional registry. Its domain part SHOULD be a valid domain
 name that uniquely identifies the SMTP client. This is usually the
 same as the domain name given in the EHLO command, but not always.
 The EHLO domain name identifies the specific host the SMTP connection
 originated from, whereas the <transid−spec> domain can refer to a
 group of hosts that collectively host a multi−homed SMTP client, or
 it can refer to a mobile client’s home domain name, etc.

 The <transid−spec> local part MUST be an identifier that
 distinguishes this SMTP transaction from any other originating from

 this SMTP client. Care must be used in constructing a <transid−spec>
 to simultaneously ensure both uniqueness, unguessability, and the
 ability to reidentify interrupted transactions. It MUST be
 unguessable for security reasons; see Section 4.

 Despite the structured nature of a <transid−spec> the server MUST
 treat the value as an opaque, case−sensitive string.

 Note that the contents of the [RFC2822] Message−ID: header field, or
 the MAIL FROM: ENVID parameter [RFC3461], typically are NOT
 appropriate for use as a <transid−spec>, since such identifiers may
 be associated with multiple copies of the same message − e.g., as it
 is split during transmission to different recipients − and hence with
 multiple distinct SMTP transactions.

 For security reasons, servers MUST treat the same <transid−spec> from
 different clients as different transaction IDs. Servers MUST use a
 secure identifier to distinguish clients, such as credentials from

 the SMTP AUTH command [RFC2554] or from TLS negotiation [RFC3207].
 Note that these identifiers are independent of the IP address a
 client connects from: servers MUST allow authenticated mobile clients
 to reconnect and resume transactions from different IP addresses. If
 a client is not authenticated the server SHOULD use its IP address to
 identify it.

2.4. Octet offsets

 The <octet−offset> represents an offset, counting from zero, to the
 particular octet in the actual message data the server expects to see
 next. (This is also a count of how many octets the server has
 received and stored successfully.) This offset SHALL NOT account for
 the message envelope. A value of 0 would indicate that the client
 needs to start sending the message from the beginning, a value of 1
 would indicate that the client should skip one octet, and so on, up
 to a maximum equal to the message size. Additional requirements
 apply depending on the command(s) used by the client to transmit the
 message data:

 DATA [RFC2821] section 4.5.2: The <octet−offset> SHALL NOT count any
 octets added by the dot−stuffing algorithm. The offset MUST also
 correspond to the start of a line, i.e. equal to zero or a point
 immediately after a <CRLF>.

 BDAT [RFC3030]: The <octet−offset> SHALL count octets in the same
 way as the <chunk−size> parameter to the BDAT command. It MAY
 point anywhere within a chunk. It SHALL NOT count any octets for
 the BDAT command itself.

 BURL [RFC4468]: The <octet−offset> SHALL count the size of the
 content retrieved from the URL given in the BURL command. The
 offset MUST NOT correspond to a point within the BURL data; that
 is, the server stores the whole URL content or none of it. The
 <octet−offset> SHALL NOT count any octets for the BURL command
 itself.

 These requirements are consistent with the semantics of the SIZE
 parameter to the MAIL command [RFC1870].

2.5. Server−side resume state

 The server’s "resume state" is the additional information it retains
 in order to implement checkpoint/resume.

 The server SHOULD keep track of the transaction IDs associated with
 each connection, that is the <transid−spec>s used by the client in
 RESUME commands or TRANSID parameters. This so that it can prevent
 multiple connections from trying to modify the same transaction, as
 described in Section 2.7, and so that the server can discard the
 resume state of the connection’s transactions when the connection is
 closed cleanly, as described in Section 2.10.

 What is included in a transaction’s resume state varies depending on
 whether or not the server has received any message data, and whether
 or not it has committed the transaction. The server commits the
 transaction when it decides what its final reply to the last of the
 message data is.

 Servers retain no resume state before they receive any message data.

draft−fanf−smtp−rfc1845bis−01 : 3/9

 This implies that clients must resume the transaction from the
 beginning if the connection is lost while the client is transmitting
 the envelope.

 Before the server commits a transaction, its resume state comprises
 the message envelope (including all client commands and server
 replies) and any message data that the server has received so far.
 It is OPTIONAL for the server to retain this state. That is, a
 server MAY be configured to require some or all clients to resume
 interrupted transactions from the beginning.

 When the server has received the last of the message data it SHOULD
 proceed to commit the transaction regardless of whether the client
 connection is lost while it does so. Since committing can be a
 multi−stage process (especially with LMTP [RFC2033]) this ensures
 that the client sees a consistent result even after a connection loss
 and resume. If the server commits to a 2yz final reply then it can
 continue with onward delivery of the message independent of client

 activity.

 After the transaction is committed, its resume state comprises the
 message envelope (as before), the size of the message data, and the
 server’s final reply. If the client loses a connection and takes a
 while to reconnect and resume the transactions, it can be necessary
 for the server to retain this resume state for longer than it takes
 to transmit the message on to its next destination.

 If the client terminates a transaction with a reset, the server SHALL
 discard any resume state for the transaction ID and remove the
 transaction ID from the list of those associated with the current
 connection. If the client issues a reset between transactions, the
 server SHALL retain any resume state for the preceding
 transaction(s).

2.6. Retry versus resume

 A client SHOULD NOT attempt to resume a transaction unless the SMTP
 connection was lost after the start of the transaction. A connection
 is lost if it is terminated without the client sending a QUIT command
 to the server, or receiving a 421 reply to any command. This
 includes SMTP−level timeouts as well as loss or premature closure of
 the underlying connection. If the connection is lost before the
 first MAIL command, or message transmission fails for another reason,
 the client MUST use the retry algorithm specified by [RFC2821].
 These non−resume situations include, but are not limited to, the
 following:

 o failure to establish a connection;

 o failure to establish a security layer;

 o failure to authenticate;

 o a temporary failure indicated by a 4yz reply from the server;

 o a connection forcibly closed by the server with a 421 reply.

2.7. Re−establishing a connection

 When a connection has been lost as described in the previous section,
 the client MAY reconnect immediately. It SHALL first re−check the
 DNS if necessary, as determined by the DNS records’ time−to−live. If
 the IP address (target of A or AAAA record) used to connect to the
 original server is still on this list it SHOULD be tried first, since
 this server is most likely to be capable of resuming the transaction.
 If that IP address is no longer on the list or if the connection

 fails, then the client SHOULD next try any other IP addresses
 associated with the host name (target of MX record) used to connect
 to the original server. If these also fail then the client SHOULD
 fall back to the ranking algorithm described in [RFC2821] section 5.

 A client SHOULD NOT wait for a server with an interrupted
 transaction’s resume state to come back online. Multi−homed and
 clustered SMTP servers do exist, which means that it is entirely
 possible for a transaction to be resumed on a different server host.

 Note that connection loss can appear different from the client and
 the server ends, so a client might detect the loss and reconnect
 before the server detects the loss. This can lead to legitimate
 circumstances where there are multiple connections to the server that
 appear to be trying to use the same transaction ID. Therefore, if a
 client issues a command containing a <transid−spec> that the client
 has used in another connection that is currently active from the
 server’s point of view, then the server SHOULD prevent the older
 connection from performing further actions that affect the same
 transaction. For example, the server MAY drop all but the connection
 with the most recent activity. Even if the server is still
 committing a transaction when the client resumes it, the server MUST
 issue the final reply that it commits to.

2.8. The RESUME command

 A client uses the RESUME command to discover how much message data
 the server has stored for a given <transid−spec>, which is specific
 to that client. If the server has no resume state associated with
 the transaction ID, it SHALL reply with a 355 code and an <octet−
 offset> of "0" (zero). If the server has resume state associated
 with the transaction ID the server SHALL reply with a 355 code and an
 <octet−offset> equal to the amount of message data received by the
 server so far.

 The <octet−offset> field in a 355 reply is REQUIRED to be the first
 thing on the first line of the reply. It MUST be separated from any
 following <text> by linear whitespace. The <text> can vary and MUST
 be ignored by the client.

 For example,

 355 64735 is the transaction offset

 The client MUST NOT issue a RESUME command during a MAIL transaction.
 The server SHOULD reject a RESUME command issued during a transaction
 with a "503 Bad sequence of commands" reply.

 After reconnecting, clients SHOULD issue RESUME commands for all the
 transactions in a lost connection, not just for the transactions that
 were interrupted. This is so that when the client QUITs the server
 can discard all their resume state. See Section 2.10.

draft−fanf−smtp−rfc1845bis−01 : 4/9

 The possible failure replies to the RESUME command are 500, 501, and
 421, as described in [RFC2821] section 4.3.2.

2.9. The MAIL command TRANSID and TRANSOFF parameters

 A client SHALL start or resume a resumable transaction by issuing a
 MAIL command with one TRANSID parameter and one TRANSOFF parameter.
 It MUST NOT include more than one of either parameter, or omit either
 parameter. (However see Section 3 for the meaning of a TRANSID
 parameter without a TRANSOFF parameter.)

 If this is a new transaction, the TRANSOFF MUST be "0" (zero). The
 server SHALL discard any resume state that it may have retained for
 the given <transid−spec>, which is specific to that client. The
 transaction then proceeds as normal, with the server retaining
 additional resume state as described in Section 2.5.

 If the client is resuming a transaction, then it MUST have previously
 issued a RESUME command in this connection with the same <transid−
 spec> as in the TRANSID parameter. The value of the TRANSOFF
 parameter MUST be the same as the <octet−offset> given in the
 server’s reply to the RESUME command. Apart from the non−zero
 <octet−offset> the MAIL command MUST be the same as the one issued by
 the client to start the transaction originally. If the client issues
 a MAIL command with a non−zero TRANSOFF that does not meet these
 requirements then the server SHALL reply with "503 Bad sequence of
 commands". Otherwise the server SHALL give the same reply to the
 MAIL command that it retained in the transaction’s resume state.

 After the client has issued a MAIL command with a non−zero TRANSOFF,
 it MAY re−issue the transaction’s RCPT commands. The client MAY omit
 some or all of the RCPT commands but it MUST NOT re−order them. The
 server SHALL give the same reply to each RCPT command that it
 retained in the transaction’s resume state. If the client issues a
 RCPT command that was not retained in the resume state then the
 server SHALL reject it with a "553 Requested action not taken:
 mailbox name not allowed" reply.

 After the client has issued the envelope commands, it SHALL issue
 another data transfer command (e.g. DATA or BDAT) and send the
 remaining message data starting from the <octet−offset>. The
 requirement in [RFC3030] against mixing DATA and BDAT in the same
 transaction still applies if the transaction is interrupted and later

 resumed. If the <octet−offset> is equal to the message size, then
 the client SHALL issue a data transfer command with no data (e.g.
 DATA<CRLF>.<CRLF> or BDAT 0 LAST<CRLF>) and the server SHALL give the
 final reply it retained in the transaction’s resume state.

2.10. The QUIT command

 The client MUST issue a QUIT command before closing the connection.
 It MUST NOT pipeline the QUIT command; that is, it SHALL wait to
 receive the replies to all outstanding commands before issuing the
 QUIT command. Note that this is stricter than [RFC2920] which allows
 the QUIT command to appear as the last command in a pipelined group.

 This requirement means that when the server receives a QUIT command,
 it can be sure that the client has received all the replies to all

 the transactions in the connection, so the server MAY then discard
 any resume state associated with these transactions. The server MUST
 NOT rely on this for resource reclamation and MUST still time out old
 resume state. This protects against malicious clients and some
 legitimate failure modes. For example, if the connection is lost
 after the client sends QUIT but before the server receives it, the
 client will not reconnect and the server will not immediately free
 its resume state.

3. SMTP service extension for checkpoint/restart

 This section re−defines checkpoint/restart in terms of checkpoint/
 resume, and lists the differences between this specification and
 [RFC1845]. We also explain why checkpoint/resume is better than
 checkpoint/restart.

3.1. Framework

 The SMTP service extension for checkpoint/restart is defined as
 follows:

 o The name of the service extension is "checkpoint/restart".

 o The EHLO keyword associated with the extension is "CHECKPOINT".

 o The CHECKPOINT EHLO keyword has no parameters.

 o This extension defines one additional parameter to the MAIL
 command. The TRANSID parameter has the syntax defined in
 Section 2.

 o The maximum length of the MAIL command is increased by 88
 characters. The maximum length of a <transid−spec> is 77
 characters. If the server also supports the checkpoint/resume
 extension, then its larger limits apply instead of (not in
 addition to) these limits.

 o This extension defines the 355 reply to the MAIL command which has
 the syntax defined in Section 2.

 o There are no additional parameters to the RCPT command defined by
 this extension and its maximum length is not increased.

 o There are no additional commands defined by this extension.

 o This extension is suitable for use with message submission
 [RFC4409].

3.2. Description

 A server that supports the SMTP service extension for checkpoint/
 restart SHALL include the CHECKPOINT keyword in its reply to the
 client’s EHLO command. A client that wishes to use this extension
 MUST first check that this EHLO keyword is present. It SHALL then
 issue a MAIL command with one TRANSID parameter and without a
 TRANSOFF parameter. Such a MAIL command MUST appear as the last
 command in a pipelined group; note that this is stricter than the

 usual pipelining requirements for the MAIL command specified in
 [RFC2920].

draft−fanf−smtp−rfc1845bis−01 : 5/9

 Issuing a MAIL FROM:<...> TRANSID=<transid−spec> command to a server
 that supports checkpoint/restart is equivalent to issuing the
 following hypothetical pair of commands to a server that supports
 checkpoint/resume:

 RESUME <transid−spec>
 MAIL FROM:<...> TRANSID=<transid−spec> TRANSOFF=<octet−offset>

 The <octet−offset> value of the hypothetical TRANSOFF parameter is
 the same as the <octet−offset> given in the server’s hypothetical 355
 reply to the RESUME command.

 One of the two hypothetical replies to this pair of checkpoint/resume
 commands is given in response to the equivalent real checkpoint/
 restart MAIL...TRANSID command. The reply is chosen according to the
 following rules:

 o If the hypothetical reply to the RESUME command would have
 indicated failure (i.e. not 355) then that is used as the real
 reply;

 o Otherwise, if the hypothetical reply to the MAIL FROM command
 would have indicated failure (i.e. not 250) then that is used as
 the real reply;

 o Otherwise, if the hypothetical <octet−offset> given by the
 server’s 355 reply and used in the MAIL FROM command would have
 been zero, then the hypothetical 250 reply to the MAIL FROM
 command is used as the real reply; (This is the case for new
 transactions.)

 o Otherwise, the hypothetical 355 reply to the RESUME command is
 used as the real reply. (This is the case for resumed
 transactions.)

 When a client wishes to start a new resumable transaction, it SHALL
 issue a MAIL...TRANSID command. If it does not get the expected 250
 reply (which would indicate an accidental or malicious transaction ID
 collision) it SHALL issue a RSET command to reset the transaction,
 and re−issue the MAIL...TRANSID command.

 When a client wishes to resume a transaction after a lost connection,
 it SHALL issue the same MAIL...TRANSID command again. If it receives
 a 250 reply, it MUST repeat the transaction in full. If it receives
 a 355 reply, it MAY re−issue the rest of the transaction’s envelope

 commands, then it SHALL issue a data transfer command and resume
 transmission of the message data at the exact <octet−offset>
 indicated in the 355 reply.

 In all other respects this extension works in the same way as
 checkpoint/resume (Section 2).

3.3. Changes from RFC 1845

 This section lists differences between checkpoint/restart as
 specified in this memo and as specified in [RFC1845]. We also give
 the reasons for each change.

 o Interworking with pipelining [RFC2920] is improved in a number of
 ways:

 * We explicitly state that a checkpoint/restart MAIL command has
 stricter pipelining requirements than specified in [RFC2920].

 * A client that pipelines its envelope commands and message data
 (using BDAT [RFC3030] or BURL [RFC4468]) can lose the server’s
 envelope replies when a connection is lost. Clients may now
 re−issue envelope commands when resuming a transaction.

 * A client can pipeline the end of one transaction with the start
 of the next, so a new transaction does not indicate that the
 previous transaction is complete from the client’s point of
 view. Servers are no longer permitted to discard a
 transaction’s resume state at this point.

 o We now specify the semantics of the <octet−offset> when the
 message data is transmitted using the BDAT [RFC3030] or BURL
 [RFC4468] commands.

 o We now specify how to use this extension with LMTP [RFC2033].

 o The server’s data retention requirements have been loosened. This
 allows a server to advertise support for checkpointing to less
 trustworthy clients, with less security exposure. See Section 4.

 o In [RFC1845] the <transid−spec> is coupled to the client’s EHLO
 host name. This memo specifies the use of higher−level
 authenticated client identities where possible, so that mobile
 clients can re−connect from a different IP address (which implies
 a different EHLO host name) and resume interrupted transactions.

 o This specification allows a client to re−connect to the server
 sooner when resuming a transaction than is usual for normal SMTP

 retries, as specified in [RFC2821] section 4.5.4. This is
 friendlier to message submission clients that involve a human in
 the retry strategy.

 o We have identified some security concerns that are discussed in
 Section 4.

 o A couple of trivial matters:

 * [RFC2119] keywords for normative requirements.

 * Corrected octet counts in the MAIL command length limit
 increase.

3.4. Prefer checkpoint/resume to checkpoint/restart

 Even after updating and clarifying [RFC1845], there remains a
 significant problem with checkpoint/restart, which is why this memo
 defines and prefers the not−quite−backwards−compatible variant
 checkpoint/resume.

 The problem is that checkpoint/restart adds a pipeline stall to each
 transaction. This increases the time taken to send a message, which
 is particularly undesirable for message submission clients on high−

draft−fanf−smtp−rfc1845bis−01 : 6/9

 latency connections. It also prevents clients from using the BDAT
 command [RFC3030] to stream messages to the server without pipeline
 stalls. This is particularly unfortunate because losing a connection
 during pipelined streaming can affect multiple messages, so it is
 desirable to have some way of recovering the state of transactions
 after a lost connection.

 The pipeline stall in checkpoint/restart has two functions, which
 checkpoint/resume handles in ways that avoid the stall.

 o In checkpoint/restart, the server tells the client whether the
 transaction is new or is being resumed. In checkpoint/resume,
 this information goes from the client to the server, which removes
 the need for an extra round trip in normal transactions.

 o When recovering from a lost connection, the client must find out
 the <octet−offset> at which it will resume transmitting message
 data. This implies a client−server round trip before resuming the
 transaction. In checkpoint/resume this round trip is detached
 from the transaction using the RESUME command. The RESUME command
 can be pipelined, so if multiple transactions are to be resumed
 only one extra round trip per connection is needed, not one per
 message.

4. Security considerations

 The difficulties fall into three areas: additional storage
 requirements on the server; vulnerabilities associated with spoofed
 transaction IDs; and undesirable bounce messages. All are
 significantly mitigated if checkpoint/resume is only permitted for
 trustworthy clients (which generally implies secure authentication).
 This section also applies to [RFC1845], which does not discuss
 security.

4.1. Server storage

 A significant difference between partial transactions and complete
 transactions is that the server can recover the storage used by
 complete transactions by delivering their messages. Thus if a server
 gives partial transactions a long lifetime, it can be easier for an
 attacker to exhaust the server’s disk space than with un−extended
 SMTP. The attacker does not have to outrun the server’s ability to
 process messages, nor search for a destination address to which the
 server cannot deliver immediately (such as an over−quota user).

 The extensions in this memo permit a server to choose whether or not
 to store partial messages according to operational needs. For
 example, partial transaction storage might be permitted for
 authorized message submission clients, but MX clients might be
 required to recover from failed transactions by retrying the
 transaction from the start.

 When partial messages are stored, their lifetime should be scaled
 according to the typical time it takes for a client to recover from a
 lost connection, which will depend on the operational environment but
 will often be on the order of several minutes.

 Once a transaction is complete, the server still keeps some resume
 state so that clients can recover from connection loss during the
 [RFC1047] synchronization gap. Abusive clients can waste this space

 by failing to close connections cleanly with the QUIT command. The
 server has to restrict the lifetime of this resume state in a similar
 way to partial transactions. This resume state is relatively small,
 and is important for correctness (avoidance of duplicate messages) so
 its lifetime can be longer than that of partial messages.

 This memo does not provide a mechanism for clients to discover the
 lifetime of partial transactions and resume state on the server.

4.2. Transaction IDs

 If an attacker can guess a client’s transaction IDs, it can perform a
 variety of attacks based on confusing a client about the state of a
 transaction or inserting unwanted data into a message. These attacks
 are made much easier by the extensions defined in this memo than in
 un−extended SMTP. We reduce the opportunity for attack by making
 transaction IDs unguessable and by tying them to the client’s
 authenticated identity.

 Resumable transactions can be used to turn a truncation attack into a
 message modification attack. If an attacker can cause the client’s
 connection to break in the middle of a message, the attacker can
 resume the transaction and append any data to the end of the message.
 TCP truncation attacks are much easier than TCP modification attacks.
 Un−guessable transaction IDs prevent attackers that cannot sniff the
 client−server connection (e.g. because they are off the client−server
 path or because the connection has a security layer) from doing this.

 Unguessability can be achieved by including enough random data.
 [RFC4086] provides some guidelines on how to do this securely.

 An attacker that guesses a transaction ID before the client uses it
 could potentially append data to the start of the message. In
 checkpoint/resume this is prevented by the client asserting that a
 transaction is new. In checkpoint/restart this is prevented by
 requiring clients to detect this attack and reset the transaction.

 As well as these client−side protections, the server has to tie
 transaction IDs to the client’s authenticated identity. Even if an
 attacker can guess a transaction ID, it also has to break the
 client’s authentication credentials in order to succeed. If it
 doesn’t manage to do both then the server will consider the client’s
 and attacker’s transactions to have different IDs.

 These extensions can be used with unauthenticated SMTP, in which case
 the server uses the client’s IP address to identify it. However this
 is usually not secure, especially with wireless or dial−up
 connections where it is relatively easy for an attacker to steal the
 client’s IP address.

4.3. Unnecessary bounces

 It is generally preferable for SMTP servers to reject messages during
 the SMTP transaction instead of accepting them and later generating a
 bounce message. This allows message submission clients to present
 the error to the user immediately in a friendly manner. It also
 reduces the problem of backscatter from spam with bogus return paths,

 assuming that spam sending software has a partial SMTP implementation
 that doesn’t emit bounces when its spam is rejected.

draft−fanf−smtp−rfc1845bis−01 : 7/9

 The RESUME specification requires a server to honor its original
 replies to the RCPT commands. If the status of a recipient address
 changes from good to bad between the start of a transaction and its
 completion, it would seem that the server is forced to accept the
 message then generate a bounce. This should be a rare situation if
 we assume clients will prefer to resume transactions promptly.
 However it is possible for servers to reduce the problem by giving a
 negative reply to the end of the message data: in general a 450 reply
 if not all the recipients’ statuses have changed, so that the client
 will retry the delivery later.

5. References

5.1. Normative references

 [RFC2033] Myers, J., "Local Mail Transfer Protocol", RFC 2033,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
 April 2001.

 [RFC2822] Resnick, P., "Internet Message Format", RFC 2822,
 April 2001.

 [RFC2920] Freed, N., "SMTP Service Extension for Command
 Pipelining", STD 60, RFC 2920, September 2000.

 [RFC3030] Vaudreuil, G., "SMTP Service Extensions for Transmission
 of Large and Binary MIME Messages", RFC 3030,
 December 2000.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [RFC4468] Newman, C., "Message Submission BURL Extension", RFC 4468,
 May 2006.

5.2. Informative references

 [RFC1047] Partridge, C., "Duplicate messages and SMTP", RFC 1047,
 February 1988.

 [RFC1845] Crocker, D. and N. Freed, "SMTP Service Extension for
 Checkpoint/Restart", RFC 1845, September 1995.

 [RFC1870] Klensin, J., Freed, N., and K. Moore, "SMTP Service
 Extension for Message Size Declaration", STD 10, RFC 1870,
 November 1995.

 [RFC2554] Myers, J., "SMTP Service Extension for Authentication",
 RFC 2554, March 1999.

 [RFC3207] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, February 2002.

 [RFC3461] Moore, K., "Simple Mail Transfer Protocol (SMTP) Service

 Extension for Delivery Status Notifications (DSNs)",
 RFC 3461, January 2003.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4409] Gellens, R. and J. Klensin, "Message Submission for Mail",
 RFC 4409, April 2006.

Appendix A. Acknowledgments

 Thanks to Dave Crocker and Ned Freed for [RFC1845], from which this
 document borrows freely. Thanks are also due to Dave Cridland,
 Randall Gellens, and Alexey Melnikov for encouragement, review, and
 comments.

Appendix B. Changes since version −00

 o LMTP support

 o Clarified maximum value of <octet−offset>

 o <octet−offset> doesn’t count BURL commands

 o Do not completely forbid clients from attempting to resume when
 there hasn’t been a prior connection loss

 o Clarify normal connection closure with QUIT from the client’s
 point of view

 o Resuming MAIL commands must be substantially the same as the
 transaction’s original MAIL command

 o Clarify ordering of RCPT commands in a resumed transaction

 o Forbid mixing of DATA and BDAT

 o Clarify failure replies to RESUME.

Appendix C. Draft discussion venue

 Feedback about this draft should be emailed to the author, or to the
 IETF SMTP discussion mailing list, <ietf−smtp@imc.org>, or to the
 Lemonade working group mailing list, <lemonade@ietf.org>.

Author’s Address

 Tony Finch
 University of Cambridge Computing Service
 New Museums Site
 Pembroke Street
 Cambridge CB2 3QH
 ENGLAND

 Phone: +44 797 040 1426
 Email: dot@dotat.at
 URI: http://dotat.at/

Full Copyright Statement

draft−fanf−smtp−rfc1845bis−01 : 8/9

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on−line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf−ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

draft−fanf−smtp−rfc1845bis−01 : 9/9

