
Some thoughts on MTA architecture
http://dotat.at/writing/mta-arch

Tony Finch
〈fanf2@cam.ac.uk〉 〈dot@dotat.at〉

University of Cambridge
Computing Service

Mail Support

Monday 2 June 2008

http://dotat.at/writing/mta-arch


About me

1994 – 1997 〈fanf2@cam.ac.uk〉 computer science
1997 – 2000 〈fanf@demon.net〉 web server admin
2000 – 2001 〈fanf@covalent.net〉 Apache httpd coder
2002 – now 〈fanf2@cam.ac.uk〉 postmaster

1997 . . . 〈dot@dotat.at〉
1999 . . . 〈fanf@apache.org〉 httpd
2002 . . . 〈fanf@FreeBSD.org〉 unifdef
2004 . . . 〈fanf@exim.org〉
2006 . . . 〈fanf@apache.org〉 SpamAssassin



“Wouldn’t it be nice if. . . ?”

I theoretical musings
on MTA architecture

I originally a series of
postings on my blog,
Feb 2006 – March 2007

I there is no code
and no likelihood of code



A snapshot of the problem

Average email traffic
(legitimate and spam):
Mar 2005 15
Mar 2006 20
Mar 2007 35
Mar 2008 80

I all numbers in messages
(or rejections) per second

Current traffic classification:
relay attempts 0.5 – 1.5
known malware 2 – 4
blacklisted 60 – 75
invalid recipient 1.5
invalid sender 1.2
SpamAssassin 2
legitimate email 3
internal email 2.5



Concurrency

I concurrency requirements
grow with spam volumes

I most MTAs use an OS
process per connection

I really inefficient!



Waste vs efficiency

I event-driven connection multiplexing

I high-level languages with lightweight threads

better software performance =⇒ better hardware efficiency



Waste vs efficiency

I best use of the available resources . . .



Some partial solutions

I SAUCE – software against UCE
http://www.chiark.greenend.org.uk/∼ian/sauce/
(written in Tcl)

I qpsmtpd-async – anti-spam smtpd for qmail
http://smtpd.develooper.com/
(written in Perl)

I MailChannels Traffic ControlTM

http://www.mailchannels.com/products/traffic-control.html

http://www.chiark.greenend.org.uk/~ian/sauce/
http://smtpd.develooper.com/
http://www.mailchannels.com/products/traffic-control.html


Address verification

I most verifications are for messages that will be rejected

I email address routeing can be arbitrarily complicated
so verification can be too!

I concurrency useful for multi-recipient messages
as well as multiple messages



Avoid bouncing

I reject unwanted email as early as possible

I try hard not to accept and bounce

I reduce spam backscatter & forwarded spam

I avoid wasting your MTA’s resources



How email addresses are routed

I DNS — MX/A/AAAA
I flat files — text or cdb

I aliases
I mailertable
I virtusertable

I LDAP — “laser” schema

I SQL databases



User-defined filtering

I Sieve — RFC 5228

I address validity can be conditional on the sender’s address

I selective sub-address validity, e.g.
fanf9+subaddress@hermes.cam.ac.uk



Routeing with regular expressions

I try to match address
against a series of
regular expressions

I when one matches,
replace address with
corresponding result

I interpolate captured
subexpressions

I route resulting address,
repeating regsub
if necessary



Verification: you’re doing it wrong!

Postfix local recipients map



Verifying relayed addresses

department

SMTP

incoming MX

SMTP



Verification: you’re doing it wrong!

I copy table of valid recipients
from department to MX

I configure MX to query
department’s LDAP directory



Call-forward recipient verification

220 mx.cam.ac.uk
HELO dotat.at
250 Hello
MAIL FROM:<dot@dotat.at>
250 OK
RCPT TO:<?@cl.cam.ac.uk> 220 mta.cl.cam.ac.uk

HELO mx.cam.ac.uk
250 Hello
MAIL FROM:<dot@dotat.at>
250 OK
RCPT TO:<?@cl.cam.ac.uk>
550 Unknown user

550 Unknown user QUIT
RSET 221 Goodbye
...



Content scanning

I anti-spam

I anti-phishing

I anti-virus

I lots of CPU

I lots of memory



Content scanning goals

I decouple scanner from client concurrency & speed

I do not require entire message to be buffered in RAM

I avoid temporary on-disk buffers

I security boundary between content scanner(s) and MTA



Data callout

I use the normal
local delivery mechanism

I efficiently transfer a file
from the queue to a program

I cross security boundaries

I control concurrency
and smooth load spikes



Queue layout

I MTAs typicall scatter messages all over the disk

I often separate files for envelopes and contents

I this makes queue runs particularly expensive



Log-structured queue

I write all metadata sequentially to one file

I queue runners read file sequentially

I updated envelopes also appended to the file

I queue runners act as garbage collectors

I size of log bounded by retry interval



Log-structured queue

envelope log

write30m1h2h4h



Architectural principles

I lightweight concurrency througout the system
I load smoothing / scheduling of scarce resources

I database connections, content scanners

I address routeing is verification

I content scanning is a data call-forward

I a log-structured queue minimizes disk seeks



That’s all, folks!

I slides and notes available online:
http://dotat.at/writing/mta-arch

I any questions?

http://dotat.at/writing/mta-arch

	Introduction
	Concurrency
	Verification
	Routeing is verification
	Callout verification

	Content scanning
	Log-structured queue
	Conclusion

