The Sieve Language and a General Model for
Delivery and Interoperable Filtering in Internet Mail

Matthew Wall
wall@cyrusoft.com

a Cyrusoft
White Paper v. 2.00 = February, 2001

Cyrusoft International, Inc.
5001 Baum Blvd.
Pittsburgh, PA 15213
http://www.cyrusoft.com

Contents

FILTERSAND DELIVERY: SOME DEFINITIONS
FILTERSAND INTERNET MAIL NOwW

THE NEED FOR A STANDARD FILTERING LANGUAGE
THE SEVE MAIL FILTERING LANGUAGE
MODELSFOR THE APPLICATION OF SIEVE 14
REFERENCES AND FURTHER INFORMATION 21

o o 01N

Overview

This white paper is an introduction to the Sieve Mail Filtering Language, an explication of the need
for it, and a proposal for an operating model for its application.

This paper covers four topics:
a general model for the concept of delivery as a distinct architectural stage in Internet Mail;
the relationship of filtering mechanisms to this concept of delivery;
the need for an interoperable, standardized filtering language; and

a description of the Sieve filtering language, with some suggestions as to how to use it in the
proposed model of mail delivery.

This is not meant to be an implementer’s guide to Sieve, nor a definitive model document for its
use. Rather, it is meant as background information to help the reader understand the motivation
behind its development and its anticipated application, and as a first introduction to the Sieve
concept.

Filters and Delivery: Some Definitions

Mail filters are a part of almost every Internet mail system. In the basic understanding that most
end users have of the concept, a filter is a two-part beast.

The first part is a test, usually set up manually by an end user, involving comparisons of textual
values in mail message headers or bodies against a pre-defined list of potential matches.

Practically, this test-match is useful only when paired with the second part of a filter (again, by
popular understanding within the context of a mail system), a consequent action: changing the
destination folder of a message, rejecting the message, supplying an automated reply, or similar
processes. There are dozens of useful potential actions, but there are four very common ones:
filing a message into a specified folder; rejecting or discarding a message; generating a reply to a
message (such as a ‘vacation’ program); and re-directing a message to a third party.

We’'ll talk about the current state of mail filtering in internet mail a bit further below.

Mail filtering is most usually (but not always) done at the stage of delivery in the lifecycle of an
email message. Our contention is that in order to do the things users and administrators need to
be able to do with delivery, a standardized basic mail filtering language is necessary.
Understanding some nuances of delivery is helpful in describing why there should be a linkage
between the concepts.

Delivery as a Layer

The basic premise of this paper is that delivery is a separate layer in an abstract model of an
Internet mail system or architecture with its own distinct functional purposes and operational
requirements. While this may seem stunningly obvious, there’s a subtle distinction to be made
between the usual concept of delivery as a process, or more to the point an incidental part of the
mail transport process, and our concept of delivery as an event. As an event, one of the aspects of
delivery is to trigger potential filtering operation, and it is desirable (as we’ll see below) to
approach this using an interoperable standard, much as mail transport and end-user access use
interoperable standards.

Most discussions of how Internet mail works on an abstract layer focus on two aspects of the end-
to-end process of generating a message on the sender’s side to reading it (and disposing of it) on
the recipient’s side. The two basic software elements of this process are encapsulated in the
concepts of a Mail Transport Agent (MTA) and a Mail User Agent (MUA). In the simplest, long-
standing model of Internet mail delivery, an MUA creates an RFC822-format message, submits it
to an MTA that is compliant with the SMTP (Simple Mail Transfer Protocol, or RFC821) standard,
which in turn transfers it dynamically over the internet to another SMTP server for delivery (or
fails to do so, and notifies the sending agent of this fact).

By delivery, we usually mean the distinct moment at which an Internet mail message comes to
“rest” by being successfully written to a mailstore, almost always in some form on disk. In the
basic model above, delivery has traditionally meant simply writing out the message in a local
mailbox file format for later inspection and disposition by the end user. When most internet
email was, in the original instantiation of this model, simply stored in common file systems on
host-based operating systems — such as in standard mailbox format on Unix -- host-based MUAs
were relegated to simple examination of those contents as part of a real-time interactive login
session to the host. In other words, the SMTP server handled delivery, and the end user’s mail
program — and by extension the end user — had nothing to do with the manner of delivery.

Models for Internet Mail and Delivery

Delivery is a tricky concept, though, since these days a message can be reintroduced into the
transport system, and delivered and re-delivered.

The original Interactive Mail Access Protocol (IMAP), which has evolved into the sophisticated
Internet Message Access Protocol version 4 (now IMAP4revl), was the first standard internet

The Sieve Language and Internet Mail Filtering and Delivery 2

protocol to develop a working model in which a client might access a mail message without a
direct interactive terminal session. “Delivery” under the original IMAP-based internet mail
model wasn’t changed per se, but the additional element of a client program remote to the file
system on which the user’s mail is stored did complicate the overall process of modifying
delivery, as well as introducing the possibilities of new functionality via extended delivery
system (as we’ll discuss below).

The Post Office Protocol (aka POP, now described by the POP3 standard) introduced an even
simpler model for the “access” layer by a remote client program, in which the client program
initiates a one-way, one-time request to transfer the mail from a temporary delivery/storage
point on a mail storage system to the computer on which the MUA resides and is used. The
‘interactive’ portion of accessing mail was limited to what amounts to a re-delivery. POP3
essentially divided the process of the mail getting to the end user into two distinct delivery
events: one at the receiving SMTP server’s end of things, the other on the user’s local disk file
system.

Transfers of mail messages within either the POP or IMAP-based mail-access model — copying,
moving, or marking them for deletion — might be considered another instance of ‘delivery’, in
that they take a message to a new ‘resting’ point. This is somewhat beyond the original model of
delivery, and has additional implications for filtering of the delivery of those messages, as we’ll
see. The IMAP protocol actually allows protocol-based transfer of messages between IMAP
servers and separate mailstores without going through an SMTP-based MTA. This feature can be
used within a given site or server for “bulletin board”- style applications, but can potentially be
used for interactive direct transfer between two completely different hosts, bypassing the usual
delivery checks and balances of SMTP.

Web-based mail clients, which are already extremely popular for many ‘free’ email sites and are
growing in popularity for enterprise use, are another interesting case in point. The sending and
receiving of mail from the user’s perspective is frequently done via CGI applications, which have
their own requirements for checking validity of mail and so forth. The filter capabilities
commonly available are also usually constructed by html-forms, CGI-, or other web-mediated
forms of building up filter sets and rules. The point at which these rules are generated, syntax-
checked, and executed may vary, and frequently there may be reasons why the filters should be
modified by external agents (for instance, an automated agent that checks filters to enforce site
policy, either incoming or outgoing, or displays an ad based on a user’s profile). In this case, it
may be more difficult to isolate ‘delivery’ as a distinct event related to the state of the message, so
much as the event of the user’s access.

The evolution in recent years of IMAP to the point where IMAP servers are now a practical
option for primary management of, and access to, messages on an enterprise-scale also raises the
stakes for filtering tasks, adding in the element of organizational priorities and requirements.
Because a message is stored on a server, and can be moved from container to container, from
local disk cache back to the server, and even within (by sequence) a given mail folder, the initial
delivery may be only the first of many changes in state of a message. Conversely, in a pure on-
line model of IMAP, the requirements for filtering may apply without transfer of a message at all:
messages might be “filtered” for transfer to an IMAP client using IMAP’s partial download
capabilities, without actually affecting a permanent transfer.

A simple case in point is the ability of some IMAP servers to understand subaddressing. A
subaddress is an additional part to the left-hand-side of an RFC822-formatted address, related to
a recipient ID but separated from it by a token. An example might be wall+spam@cyrusoft.com
—the addressee is wall@cyrusoft.com, but the destination is one of user wall’s folders called
‘spam’. The Cyrus IMAP server from Carnegie Mellon (and many of its commercial descendants)
supports this form of re-routing for both personal mailbox space and for public delivery (via a
separate prefix, ‘bb’, followed by the foldername). One practical application is to deliver mail
from mailing lists directly into a folder specifically for that list. Such servers essentially break out
a distinction between users of mail systems and folders within the mail system to which one or
more users may have access; the process of determining the mail folder is really a form of
filtering at delivery time inherent to the specific server. (See [MURCHISON] for a description of
sub-addressing and a proposed Sieve-based treatment as a practical exemplar.)

The Sieve Language and Internet Mail Filtering and Delivery 3

To: f@.com
From me@ .edu
Subj: stuff
Date: Jan 1,
2000

RFC 822

message text
E in the body.
. Originating MUA composes message ‘ _H

=Y

2. Message is submitted to SMTP server

3. Message arrives at receiving SMTP server

[=]
4. SMTP server decides where to deliver it '

10T\ ee—

5. Recipient’'s MUA access the message

6. Recipient’s MUA files the message on a local disk store

Figure 1: Delivery in Internet Mail
Each point at which a message comes to “rest” might
be considered a “delivery point”

The Sieve Language and Internet Mail Filtering and Delivery 4

Delivery, therefore, can be more accurately viewed as a distinct action that can occur multiple
times throughout the “life” of a message rather than a single event. Architecturally speaking, this
element can be layered onto three distinct processes: SMTP-MTA delivery to mailstore, transfer
from a temporary mailstore to a remote client agent (as with POP and purely offline-IMAP), and
at either entrance to or exit from a more permanent mailstore (as with IMAP mailbox delivery)
(see figure 1 for a diagram).

Filters and Internet Mail Now

At present, the end user’s mail client application software is by far the most common layer at
which mail filters are used and seen, especially in POP3-based mail application programs. The
filter model is fairly simple: users set up the tests with dialogues that allow them to specify
search criteria based on the values of strings that are to map onto specific parts of a standard mail
messages. The examination of the message parts, and evaluation of the tests, is done directly by
the client application program at the time messages are retrieved from a remote server or
otherwise examined by the program. The resulting actions that are possible as a result of a test-
criterion match are wholly defined by the capabilities of the client mail program, and limited in
scope to what data and actions the mail program may access. In practice, this usually means
either simple transfer of the mail message to a specific local disk mail folder, or possibly
submission of a new message to the mail transport system, if in fact the mail transport system is
available at that time.

Filters, however, actually operate at many layers.

Most SMTP-based mail transport agents have capabilities for evaluating aspects of a message and
rejecting them, if the local mailstore cannot accept them or if they’re in the wrong format, or for
other (syntactic) technical reasons. SMTP-based mail servers also provide an increasingly-
important layer for prevention of delivery of mail based on the semantic implications of the
message, such as unsolicited email, (aka junkmail or spam), or for more sophisticated content-
based rejection of messages inappropriate for final delivery to an end user (as of certain forms of
electronic communication to minors, for example).

A recent but increasingly important development in the mail tools market is a category of
product specifically intended to filter outgoing mail by content. Some organizations do this to try
to prevent proprietary or private information from being leaked out of the organization; a more
altruistic reason to have such a mechanism is to prevent the spread of MIME-based mail viruses.

There are also existing tools for users to specify filters outside of the scope of their mail client,
such as the popular Procmail program, which is run in between the SMTP server and the final
storage of mail on many time-sharing systems. There are many reasons for wishing to do this.
Users not using a POP-based mail client may wish to have the same level of functionality that
POP-style filters provide. Administrators may wish to apply filtering criteria for a very specific
group of users, criteria that ought not apply to the general population of users, and are thus not
appropriate as generic SMTP delivery filters. Even users of a POP system may wish to pre-sort
their mail, to avoid the delivery costs (in network bandwidth, processing time, disk use, and most
importantly, the time of the end user) of downloading messages the user has utterly no interest in
receiving. Alternatively, POP users might wish to have messages filtered and actions made based
on those filters without the requirement they actually perform a POP-mail check themselves: for
instance, “vacation” processing, to tell correspondents the user is not actually reading his or her
mail.

There are also instances where a form of filtering is used within a mail system, after initial
delivery of the message to the user’s inbox. For instance, a user or administrator might wish to
“cull” mail older than a certain date from an IMAP-based mail system to clear out disk space, or
do a periodic check of certain MIME parts for viruses. Any administrative tool performing tests
and actions in this manner is doing a form of filtering -- in these examples, non-delivery-time
filtering.

The Sieve Language and Internet Mail Filtering and Delivery 5

So, far from just something an MUA does for the convenience of a user, filters can and should
operate at multiple layers in a mail system for a variety of purposes. (One might note a certain
parallelism to the different delivery events, although not a complete one-to-one-mapping.)

Generally speaking, there are thus (at least) three major filtering models, which can work
independently or in conjunction with one another.

Client-side filtering, in which the end-user’s mail user agent establishes the filtering
criteria, stores them, and executes the filters at the time the client is used to access
specific message parts. One way of describing this form of filtering is that it is
synchronous with the point at which the end user accesses the mail.

Server-side filtering, in which filters are stored and executed by the mail server
system, usually at the time of initial delivery by the SMTP server. From the user’s
perspective, this is generally an asynchronous event.

Filtering by Proxy (this is our coinage), describing a filtering activity which is
performed on behalf of a user or mail user agent by a third party independent of, or
not required for, initial delivery or access. We use this to describe the general
category of administrators or their software agents doing filtering of mail that is not
necessarily end-user directed, and which may happen during the process of
transport as an extra layer or gateway, or after-the-fact.

Figure 2 illustrates where filtering occurs in the previously-described delivery model.

The Need for a Standard Filtering Language

Each of these filtering systems and layers may work well enough in isolation — otherwise, of
course, they wouldn’t be used now. But virtually every filtering scheme is idiosyncratic to a
specific software tool, and the scope of these software tools is almost always limited to a specific
functional problem. This means the filter, once set up, can’t be re-used by other programs and
frequently not even by other users of the same general system.

There are also operational problems specific to each kind of filtering. For instance, in a Procmail-
style server-side filtering system, users have to know how to login to a host system and edit text
files, as well as understand the syntax of a specific language. In client-side filtering systems, the
same filter to sort out a single spammer might have to be re-constructed by thousands of users. It
would be nice if common filters could be more easily shared among users of disparate
components. And if a user changes mail clients, they might have to re-create literally hundreds of
filters. Even if re-created, there’s no guarantee the new filters will be a semantic or functional
match to the old ones, since the new filtering mechanism probably will have different syntax and
structure.

With increasing volumes of mail, there is also the question of the “right fit” for a mail filtering
agent. Filtering at the level of an end user requires that the delivery and transport system absorb
the overhead of initial storage and transfer to the end user, and the end user’s own system
(typically a desktop computer system, but possibly a PDA, pager/cellphone, or other ‘thin’
device) must bear the computational and data handling burden of doing the processing of the
filtering action. This is not much of a problem for a few messages, but if each user receives
hundreds of messages a day, and might reject half of them, the mail agent is performing far more
work than it needs to. There’s also the issue of whether users can keep up with the pace of mail
filtering requirements, or generally have the sophistication to set up what amount to elementary
scripts or programs, in the instances where they must build and maintain client-side filters. The
more complex logical constructs for advanced filtering are out of reach to the majority of users,
simply because they require detailed understanding of both mail syntax and first-order logic.

The Sieve Language and Internet Mail Filtering and Delivery 6

lT:c: f@. gmd

§§§l’)e St "‘ N\ B sendi ng

e o SMTP ﬁ SMIP server

,—\ o the body.
SMTP
originati ng MJA

Any delivery opportunity is E rsﬁ/ﬁ_g' \s“ep\g/er
also usually a filtering opportunity - %

and a candidate for Sieve -

POP server /

—

5

| S—
—D

| MAP server

filter by
P server

localdisk

//
folders
?ﬁ’@ AR NN
— server

— _‘—§b folders

filter by
reci pi ent MJA

figure 2: filtering in Internet Mail

Aspects of these problems could be significantly addressed by having a standard, interoperable
syntax for filtering internet mail messages. By having a common core syntax, filters could be
created once and then shared and re-used among applications, users and administrators, and re-
applied at many different potential layers. By having more individuals, administrators, and
software developers focussing on creating tools using a common language, it should be possible
for a larger and more sophisticated body of tools to progress, instead of energy being expended
on a panoply of different syntaxes and implementations.

The Sieve Language and Internet Mail Filtering and Delivery 7

The Sieve Mail Filtering Language

Sieve is a mail filtering language that has been developed as a proposed candidate for an internet

standard mail filtering syntax. It is not meant to be an exclusive remedy or mechanism, but rather
the basic lingua franca on which to build and begin to integrate interoperable filtering elements at

various layers of an internet mail system.

The basic concepts for Sieve have been discussed in standards-engineering circles since 1993. In
1995, as part of Carnegie Mellon University’s Project Cyrus, the first formal attempt to specify
what ultimately became Sieve was made. Since then, through open discussion and development
in the manner of the Internet Engineering Task Force, the evolution of Sieve has become a multi-
vendor effort.

As of tlanuary, 2001, Sieve is now aProposed Internet Standard, described in RFC 3028 (see
[SHOWALTER] for details. Multiple implementations of Sieve exist on both client and server,
and some implementations are being used in a production capacity, including Mulberry 2.1 from
Cyrusoft.

Requirements for Sieve

What are the requirements, then, for a standardized mail filtering language? The experience and
contributions from adminstrators, end users, and developers of both client and server products in
specifying Sieve suggests the following key considerations.

For internet email, it first and foremost must be specifically designed for RFC822-formatted
messages.

The language must be independent of the event at which it is to be used. In other words, it
must be implementable on either a mail client or mail server, but dependent on neither in
particular.

It must be usable by both knowledgeable users (e.g. mail system administrators) and
“normal” end users, and of course executable by software elements appropriate to the given
user.

It must provide the most basic, common-across-the-board functions of a mail filtering system
to provide the desired lingua franca.

It must provide an extensibility mechanism to provide new functionality and possible
compatibility with more advanced mail filtering functions.

It must not make the problems filtering is attempting to solve worse, or introduce new
problems of its own.

There are some additional features that, while not absolutely mandatory, are highly desirable in a
standardized filtering language:

Its syntax and structure should be amenable to construction with a graphical user interface,
and where possible, relatively easy readability by humans.

The syntax should be “safe”, as experience with computationally-complex languages has
shown them to be a potential security nightmare when attached to a mail system. For the
purposes of designing Sieve, we have interpreted this to mean that the language should not
have loops, function calls, or variables, but rather be a linearly-interpreted script.

The language should not be overly complex. The experience of developing new internet
standards strongly suggests starting with simple solutions and building on them, rather than
trying to develop a completely comprehensive system from scratch.

In short, the language should be specifically tuned to usefulness in the specific mail filtering
context, should be simple, but should be open-ended enough so that it can be gradually built up
and ‘evolved’ as time and experience dictate.

The Sieve Language and Internet Mail Filtering and Delivery 8

What Sieve is Not

Sieve is not intended as a complete or complex computer language. It is specifically and narrowly
defined for the purpose of filtering RFC822 messages and nothing else.

Note that Sieve does not technically require SMTP as the delivery mechanism: it speaks only to
message format. It is perfectly possible that Sieve can be used outside of a mail transport system;
for instance, for the post-processing of messages in RFC822 format that have been saved to local
disk. However, the vast majority of applications of Sieve will be in an “active” mail transport and
delivery sequence.

Sieve is not intended as a final solution for any particular mail management problem, such as
spam, although it clearly has some application for specific problems.

Sieve does not currently address content-based filtering of message bodies. Future extensions to
or revisions of the Sieve base specification may do so.

Sieve is intended to be used primarily for ‘incoming’ messages, although it is possible to
fruitfully use its syntax (most likely in the context of future extensions) for ‘outgoing’ filtering of
mail.

Sieve is transport-independent; while we’ve suggested some models for its use below, these are
our particular opinions, not dogma. Sieve is flexible enough to be used in a variety of scenarios.

Sieve will probably not be an out-of-the-box replacement for any particular piece of software.
There are many filtering implementations extant, most of which have capabilities that presently
exceed those of the base Sieve syntax. At the same time, with the extensibility of Sieve, it is
suggested that future modifications and extensions of existing products might be done with
future compatibility with Sieve engines in mind.

The Sieve model is not either a prescriptive nor a proscriptive one, in that Sieve-compatible
implementations can co-exist with non-standard filtering schemes, and Internet mail will
continue to work.

The Sieve Language

The Sieve language is formally described in [SHOWALTER]. This document is sufficient basis on
which to develop a full implementation, although its specific use is not prescribed normatively.
We’ll suggest some — but by no means all — possible models for a working Sieve system in the
next section. This section is intended as a very brief introduction to the basic language concepts.

Sieve is a simple ordered set of commands, represented by lines. The language is represented in
UTF-8.

Sieve has the usual basics of a scripting language, such as a facility for comments, the capability
for multi-line commands, and so forth.

Sieve recognizes the standard parts of an Internet Mail message: headers, addresses, and distinct
MIME parts. Sieve does not have a facility for evaluating the body of messages; this is on
purpose, to avoid many complications in a required implementation, but adding body
comparators is envisioned as a future extension of the syntax.

Tests are given as arguments to commands, using a comparator. Sieve allows for the use of
multiple comparators, but defaults to octet comparisons using ASCII unless otherwise specified.
A proposed sieve extension (see [MURCHISONZ2]) provides for regular expressions.

There are ten tests defined in the base Sieve syntax: basic boolean tests, a size test, and other tests
more specific to mail message syntax such as subparts of the message header. These can be used
in combination. For example, Sieve syntax allows one to simultaneously test if any header
contained the words ‘Make Money Fast’ or ‘Get thin now!’ or is sent from

‘boss@our conpany. comni , and perform a single appropriate action.

The Sieve Language and Internet Mail Filtering and Delivery 9

There are three basic control structures. There isa simplei f - el sei f - el se case conditional
control; a structure which requires the use of certain extensions to the language before executing

a command; and a st op primitive to manually halt execution. Control structures execute on
blocks of text as arguments, which are enclosed in curly braces.

There are five basic actions for disposing of a message: rej ect,fil einto,redirect,keep,
and di scar d. The keep action is defined by each implementation as the default action for a new
message, most typically placing it in the user’s main inbox. The r ej ect action sends back a
Message Delivery Notification is optional to implement (though strongly suggested). Similarly,

fileintoisalsooptional (though also strongly suggested), in that not all mail systems have the
concept of more than one possible location in which to file mail.

Extensions to the syntax are invoked by the use of the command r equi r e in a script. Extensions
can include new control structures, actions, and tests. Servers supporting specific extensions
provide a capability advertisement at execution time. Execution of a script is stopped if a
required extension is not present.

The basic form of a Sieve command is typically an ‘i f * control structure, with a message part
(and perhaps subpart tag) specified, a test, and an action in curly braces. A full Sieve script can
and probably will contain many such commands. Execution implicitly stops at the end of a script

or file, or via an explicit st op control.

Some basic examples of Sieve scripts follow.

Example 1

if size :over 100K {
di scard;

}

This example tests to see if the total message size is over 100K, and if it is, the message is
permanently discarded —i.e. it’s not filed into the user’s INBOX or any other place.

Example 2

i f header :contains :conparator "i;octet" "Subject"
"MAKE MONEY FAST" {
di scard;

}

This is a case-sensitive test to see if the Subject line contains the phrase ‘MAKE MONEY FAST’ -
in all caps — and if it does, to delete it.

The Sieve Language and Internet Mail Filtering and Delivery 10

To: f@.com

fLom =g, edu Sender sends message

Date: Jan 1,
2000

RFC 822
message text
in the body.

== /Marc

21 22\ From 1@ edu

To: f@zy.com
From me@ . eduyl

Subj: stuff

Date: Jan 1,
2000
RFC 822

To: me@ . edu message text

From DSN in the body. \

j: rejected

Date: Jan 1,

2000

RFC 822

message .

rej ected. vacation

reject redirect

di scard
keep

To: f@.com
From me@ .edu

X

Recipient reads message

figure 3: some possible Sieve actions

The Sieve Language and Internet Mail Filtering and Delivery 11

Example 3
require "fileinto";
i f header :contains "froni "Donald Trump" ({
di scard;
} elsif header :contains ["subject"] ["$$$"] {
di scard;
} else {
fileinto "1 NBOX";

}

In this example, the header of the message is evaluated so that if the From address includes the
string “Donald Trump”, or if the subject contains the string “$$$”, the message is discarded, and
otherwise it’s properly filed into the user’s inbox. Note this script requires the ‘fileinto’ extension.

Example 4

require "vacation";
i f header :contains "fronml' "boss@robnitzm edu" {
redirect "pleeb@anadu. w. us";
} else {
vacation "Sorry, |I'maway, |'ll read your mnessage
when | get around to it.";

}

This example is an application of the vacation extension (described in [SHOWALTER?2]). It checks
to see if a message is from The Boss, and if it is, the message is sent along to another email
address (where one might be reading mail while on vacation). Otherwise, the vacation message is
sent back to the sender of the message. (Vacation, it should be noted, of course has its own
requirements and capabilities, such as the requirement there be no mail loops generated, and the
capability to set a vacation message with a Sieve command.)

Sieve Language Concepts

The rules and language specified in the base document [SHOWALTER] should be considered the
definitive source for the semantics of the language. This section, however, is meant as a brief
summation of some of the general underlying concepts and specific design choices in the Sieve
language.

We generally refer to an implementation capable of executing a Sieve script as a ‘Sieve Engine’, to
provide a generic way of describing Sieve execution that might take place on either client or
server.

The execution of Sieve scripts is done by definition at the time of final delivery. Obviously, there
may be multiple “final deliveries” as we discussed above, but Sieve narrowly defines final
delivery as the movement of a mail message into a user-accessible permanent mailstore.

Sieve scripts are intended to be read, parsed, and executed linearly, left to right, from top to
bottom. It is a matter of design choice as to whether the script is interpreted or compiled by the
Engine, although the order of execution is implicitly message-wise. Syntax errors at compile time
should be detected by the implementation and relayed back to the user or user agent if possible.
All processing stops if there is a run-time failure. Obviously an interpreted script will only detect
syntax errors at the point in the script they arise.

There are many restrictions on combinations of actions specified in the base document, as well as
a common sense general rule of thumb that implementations should not allow combinations of
actions that make no sense. When an implementation detects such a forbidden (or prohibitable)
combination, it stops processing.

The Sieve Language and Internet Mail Filtering and Delivery 12

By default, if there is a failure of any sort, Sieve has the concept of an implicit keep with respect to
the current message being processed. If an implementation has chosen to parse and run
simultaneously, messages which were processed earlier in any given batch may have already
been filed or otherwise acted upon. It is the responsibility of the implementation to provide
reasonable notification to the user as to the extent of processing before failure.

The same message should not be delivered to the same mailbox more than once per script-
evaluation, but if a script explicitly calls for this action, it is not treated as an error. The basic
premise is the primacy of the message; the user should see one copy of any given message and no
more in most circumstances. However, certain applications of a ‘multiple fileinto’ will be useful
in some implementations.

Implementations may limit the number of actions that may be executed by a given script or
command. In particular, implementations should be done with an eye towards allowing site-
wide policies to be set with respect to the number of actions and which actions may be used
together.

Implementations may also limit the levels of nesting of blocks and tests, but a minimum of at
least fifteen levels is specified in the base document.

Some recognized differences in the semantics of filing in different types of mail systems and
between client- and server-side filtering is one reason why certain implementation advice and
requirements in the document are ‘MAY’ and ‘SHOULD’ and ‘MUST’. For example, in many
IMAP-based systems, there is the concept of a ‘multiple fileinto’, in which the same message is
filed into more than one mailbox for purposes of automated processing or local redistribution.
This is a difficult and ambiguous operation on many POP-based clients, and impossible using
some MTA:s.

The design of Sieve anticipates that many extensions will be written, but that for the most
common extensions (e.g. ‘vacation’ — cf. [SHOWALTERZ2]) be documented publically, and ideally
submitted as proposed standards through the IETF process.

However, if a given Engine does not understand a specific extension required by a script, the
Engine is prohibited from doing any processing at all. As such, implementations should
intelligently anticipate a graceful mechanism for both advertising new extensions to users and
providing understandable feedback when the script calls for an extension not supported by the
Engine.

A MIME type of appl i cat i on/ si eve is defined in the base specification, although since Sieve
scripts can be usefully composed, transported, and stored in plaintext format, a large variety of
options are available for their transport and storage.

The Sieve Language and Internet Mail Filtering and Delivery 13

Models for the Application of Sieve

We’ve discussed the general model and need for Sieve, and specifics of the syntax and semantics
of the language itself. This final section is a discussion of some of the ways in which Sieve might
be practically incorporated into specific software elements, set up and used by sites, and what the
end-user experience might be.

Creation and Editing of Sieve Scripts

Sieve scripts are relatively easy to read, and most keywords used in it have obvious real-world
meanings. It is thus quite possible for a script to be developed and edited ‘by hand’, through
simple editing of a file by an end user. However, the left to right reading does not necessarily
translate into an English-style grammar, and like most such languages, precision is required for
syntactic correctness (balancing braces, remembering colons, etc.) There are also inevitably some
subtle semantics involved with creating longer scripts that might not be obvious to a neophyte.
As such, this form of editing is probably appropriate only for very knowledgeable users and
administrators.

The preferred mechanism for generating and editing Sieve scripts is a specialized form of
graphical editor. Ideally, this would provide a point and click interface that would allow the end
user to generate the filter without even having to see the text. There have been two
implementations of such a GUI, both using an HTML-based interface to a CGI which returns the
completed Sieve syntax to the user. One of these directly stores the scripts, and the other allows
the user to then cut, copy, paste, and otherwise combine blocks of Sieve script.

One optional but clever feature of a Sieve editor would be a syntax pre-checker. This would allow
validation of manually-edited scripts against the base specification and known extensions, prior
to their submission to the Engine.

A Sieve editor might also include an on-board Sieve Engine, to allow actual execution of a script
against sample messages once it is written.

There is at least one Sieve ‘standalone’ filter-builder under commercial development, and one
client-side manual-edit filter-builder in internal private release.

Obviously, there needs to be a certain amount of coordination between a Sieve editor and the
intended Sieve engine, but we can foresee a model wherein a single program generates and edits
Sieve scripts for use by multiple engines. For instance, a mail user agent might use Sieve scripts
for client-side filtering, but provide a mechanism for saving and transporting the same primitives
to a compatible server-side Sieve Engine. A typical case in point might be detecting a new form of
Spam. A single end-user could create a script, document it in its comments, and make it available
server-wide, thus providing an optional yet widely-available mechanism for others to stop the
particular kind of message wihout being required to or re-creating the filter themselves.

Sieve interfaces may provide different kinds of interface elements for different extensions. For
instance, the ‘vacation’ extension is something that is typically edited and activated for a specific,
limited period, while an anti-spam filter is probably a more permanent kind of filter with
different criteria. A user interface for vacation might have a dialogue box prompting a user for
the ‘away’ message and a list of exceptions, while an interface for an anti-spam message might
ask the user to enter keywords which she or he finds likely to be associated with unsolicited
email. Future extensions will likely have similar specific requirements of user interfaces.

The Sieve Language and Internet Mail Filtering and Delivery 14

= Rules Manager=—"——""— [0 &

[Local\/ SIEVE Y,
ollel = m| ¢

Rule Seript Edit Delete Write

Rules | Seripts |
L3 sieve | |~ |[= € Default et
1.4 test L osievel

4 redirect all .4 test

tdl imapext spam discard

T Copy to wince
i wince forward @ By

L redirect all

- siewve list
~ fé imapext spam discard
Ldimapext spam discard
= || = @ vince test =l
4] [+ [l4] Bz

Figure 4: The Sieve Rules manager window in Cyrusoft's Mulberry 2.1, a Sieve-supporting email
client.

Email Rules - OK!

Mame: [S45L | [Edit Script Companent

It Messages Match: Kl

F: [Sender i] [I:l:untains i] !ietf—sasl | |

| More Choices | Resat

— Then do Actions:
‘: [File into +] [NBoxsasl (3] |

[More Actions]] 5top if Matched Reset

bl

Cancel I

Figure 5: The graphical sieve rule editor with an example rule.

The Sieve Language and Internet Mail Filtering and Delivery 15

- FEmdil Bules - Kl S S——r

Mame: |SASL | [Edit Seript Component

Generated fram GUI =

if address :;containg "Sender” “ietf-sasl” {
fileinto "IMEOx.5a51";

H

et

Figure 6: The rule from Figure 5 in “raw” sieve script format.

Transport of Sieve Scripts

As we’ve noted, Sieve is purposely designed to be independent of transport mechanism. There is
no required ‘Sieve Network Protocol’’. This may present some initial interoperability problems in
sharing and setting Sieve scripts until other products and services provide integrated support for
Sieve. Some possible options for Sieve transport are listed below; however, it’s clear from the
variety of desired applications that there will probably never be a single canonical transport
method.

Client-side Sieve Editors and Engines need not worry about transport any more complicated than
writing the script to a known preference or internal format, so this discussion is useful primarily
in the context of server-side filtering or proxy-filtering.

Note that transport security is not explicitly discussed in each of the methods below, but clearly
different approaches have the same security features and flaws of the base transport mechanism.
For instance, it’s dirt simple to have an SSL/TLS-encrypted submission of a Sieve filter via http.

FTP and file writing

This is a more or less direct approach. The Sieve script is simply ftp’d to a designated area
(the current Carnegie Mellon implementation of Sieve does it this way), or even more simply,
created and edited in a host directory that the Sieve engine knows about. One problem with
this approach is relaying errors detected by the Engine back to the end user, however.

HTTP/HTML

Web interfaces are plentiful enough these days, and submission of a Sieve filter described in
HTML via http, with ultimate disposition and proper resolution by a Sieve engine as directed
by an http server process (likely via CGI or similar mechanism) is the route of the first
implementation by Innosoft International, Inc. This has the advantage that the syntax can be

" There is a proposed protocol custom-designed for remotely managing Sieve scripts described in [MARTIN], but this is
in no way required. [MARTINZ2] also describes a useful sieve-specific notification system for informing end users as to

when a Sieve action has taken place, which may be considered a necessary companion for some of the proposed transport
models described in this section.

The Sieve Language and Internet Mail Filtering and Delivery 16

checked at the time of submission, and an appropriate error message passed back the user.
The interface and submission layers are quite distinct in this approach, allowing for a
modular manner in building the two halves.

LDAP

An LDAP Schema for Sieve filters has already been described. Filters are vaguely directory-
like data, in that they are not frequently changed once established, have the same stringent
security and authenticity requirements as the editing of directory data, and are accessed by
external mail systems in the same way data such as preferred mailbox can be used by LDAP.
The feedback for script errors can be handled through writing to a special field within the
schema. LDAP has the virtue of increasingly wide-spread availability, natural ties to the
messaging system, and at least elemental support from mail clients. Interoperability between
LDAP-aware clients with knowledge of the LDAP Sieve schema should be good.

ACAP

The Application Configuration Access Protocol is ideally suited to the transport and storage
of Sieve data, in that it’s designed for frequent user- and application reference, modfication,
and storage. An ACAP dataset for Sieve has already been described, and the Carnegie Mellon
reference ACAP server will include Sieve support. ACAP also has the merit of being capable
of providing a direct notification to the end user on submit time, and of storing arbitrary
intermediate data (such as is likely to happen when server-side filters are executed while the
user is away) necessary to adequately apprise the end user of irregularities. Another
advantage to ACAP is the ability to flexibly share, through site inheritance and access control
lists, filters among multiple users, groups, and even site-wide. The major drawback with
ACAP at this time is the lack of an installed base. We note that IMSP, ACAP’s more widely-
deployed predecessor, has been used experimentally to store Sieve filters as well.

IMAP extension

One proposal for handling Sieve transport has been an extension to the IMAP protocol that
would allow Sieve-aware IMAP servers to advertise this fact to clients, and provide an
extended IMAP syntax for submitting,verifying, and retrieving Sieve filters. This would be
particularly appropriate for IMAP servers that took over the final delivery phase, such as the
Cyrus-strain of server. It may also be convenient for IMAP-based mail clients that wish to
share filters between client and server. However, there is not a formal proposal describing
this, and there is a certain problem with overloading the base IMAP protocol with a
functionality not inherently related to IMAP per se. This form of metadata is very much like
user addressbook, program preference, and other user-oriented ephemera, for which IMSP
and ACAP were specifically designed in preference to using IMAP.

Submission via email

Several existing server-side filtering schemes use a simple email submission scheme, in
which a filter script is submitted to a specific email addres, verified by an automatic process,
and successes or failures relayed back to the user by email. One might even describe most
Listserv software as being a form of automated filter processing, albeit with restricted
capabilities. This approach has the attraction of being familiar and eadily understandable by
users, although the requirements of including syntactically-correct instructions via plaintext
in email are considerable and probably not appropriate for most unsophisticated users. From
the server implementer’s side, this does have the virtue of being relatively simple to develop,
but there are also serious security considerations (at least in the absence of authenticated
SMTP submissions.)

One variation on ths approach would be to use the application/sieve MIME type to submit
the Sieve script as an Email attachment. The part could be generated by the local mail user
agent or Sieve agent, as it were, verified, and even purposely obscured from direct editing by
the end user (except via the GUI). An intelligent mail user agent might then digitally sign

The Sieve Language and Internet Mail Filtering and Delivery 17

such a message, for instance, with PGP, and the Sieve Engine on the server-side would then
use the public key of the originating user to verify the authenticity of the filter request.

Editors and Transport

Ideally, a graphical editor would also include the capability to transport the completed Sieve
script. The basic example is the CGl-based Sieve editor, which, when the form with the user’s
filtering instructions is submitted, posts the data to the CGI, which then stores it in a file
particular to the mail server’s Sieve Engine.

This can also, of course, be incorporated directly into an email client. Mulberry 2.1 from Cyrusoft
includes built-in hooks to allow a variety of transport methods via plug-ins, which are presented
to the user in the form of simple “Save As...” and “Save to Server...” menu options.

Transport Formats

A plaintext file is probably acceptable for the more direct forms of submission described above,
such as ftp. The specified MIME type of application/sieve should be used when transporting via
email or http. Methods such as ACAP and LDAP would require translation of the Sieve script
into the format appropriate for submission via protocol. It has been proposed that XML would
provide a reasonable method of providing a transport-independent format for Sieve scripts and
primitives.

The Sieve Language and Internet Mail Filtering and Delivery 18

Storage of Sieve Scripts

The storage of Sieve scripts in most cases will be tied in some way to the transport method. As
with mail server themselves, there will be two major models for such storage: direct file access by
the end user, and the so-called “black box storage where the storage of the Sieve scripts is
obscure to the end user.

In the initial Carnegie Mellon implementation, scripts are simply stored as plaintext Unix files in
a particular directory; the Sieve Engine automatically looks in each user’s directory for the script.

The initial Innosoft/PMDF sieve implementation, using http as a transport mechanism, parses
the HTML over the wire, then stores the verified script in a magic area accessible directly only by
system administrators and the Sieve Engine associated with the mail server.

As with any such format that’s peculiar to the implementation, none of these approaches is
particularly interoperable. Even published specs as to the submission and storage format require
that each client implement a method of access unique to that implementation. As such, while
these are good interim first steps for initial deployment experience, they are not good long-term
solutions. Storage and access by MTAs - for instance, a modification of Sendmail to read Sieve
filters, similar to the layer that Procmail provides via a piped process — would be similarly
arbitrary by server type.

In an LDAP-based Sieve storage model, the scripts would simply be stored as part of the general
directory’s database. In ACAP and IMSP, Sieve scripts would each get their own name within a
namespace specifically set aside for Sieve, and would be stored as strings. ACAP also offers the
capability of building, dynamically, a combined script, based on entries stored at site and user
levels. These two approaches have the strong virtue of being regularized, potentially
interoperable methods of storage that can be used by arbitrary clients without prior knowledge of
the server’s peculiar methods. LDAP and ACAP may work well in tandem for these purposes,
LDAP providing “authoritative” filters set by proxy by administrators and automated processes,
and ACAP providing Sieve scripts set directly by the user or the mail user agent/Sieve agent.

Client-side storage would be by choice of implementation, but implementers will bear in mind
that easy interoperability would be served by having an easily interchangeable format — such as
plain text or MIME type mapping.

Cyrusoft’s Mulberry 2.1 can store Sieve scripts as simple preferences, including using the IMSP
and ACAP remote preferences protocols. These filters are thus potentially available through the
network to other users by normal protocol streams, and can be propagated to more than one user
through the customary methods available for each of these protocols.

Server-Side Processing

The primary point at which Sieve should be integrated should be server-side processing, and in
most cases it’s appropriate for the SMTP delivery agent or a process invoked by the SMTP server
to do the processing. Some specific submodels:

Piped via the SMTP Server process

This is the way Procmail works right now. Sendmail calls Procmail, which then executes the
delivery rules. The Sieve engine would be called, or incorporated into an existing piece of
software (e.g. Procmail).

Straight to mailstore
In this model, the SMTP agent simply delivers to the mailstore, and some post-processing by

a Sieve engine is done at a later date (presumably via a scheduled job or some other user- or
administrator-defined event). This has the advantage of having an initial “safe” delivery.

The Sieve Language and Internet Mail Filtering and Delivery 19

Direct delivery rules

This is the model used by the Cyrus IMAP server: a process called deliverd in this
architecture takes the message handoff from the SMTP server once the deliverability has been
verified, and executes certain delivery rules. Sieve can then be integrated directly into the
IMAP server itself, which would allow an IMAP-centric processing model (for instance, one
non-delivery-time application might be putting aging rules into an administrative tool to get
rid of old mail via a Sieve script).

LDAP delivery rules

In this model, the Sieve rules would be retrieved from the LDAP server by a dynamic query
from the SMTP server (or IMAP server, as the case may be), and the integral Sieve engine
would execute.

ACAP reference

ACAP is an excellent repository for short, user-generated data, and direct access to rules
from an ACAP server would allow a sieve-aware server (or client, for that matter) to filter at
delivery time or at access time; the same rules could be used by both filtering agents, or
either, depending on site policy, user preference, administrative prerogative, or compatibility
level with specific clients demand.

Client-Side Processing

POP scenario

Where a POP client would be used, the client would use the Sieve rules as either the basis for,
supplement to, or replacement for its native filtering mechanism. Ideally, there would either
be an export format, or a native transportable format, that would allow such Sieve scripts to
be exchanged with other clients. Standard plain ASCII text should be the default lingua
franca. Such client-side rules, of course, can be stored in an optimized format, e.g. a database
of rules.

IMAP on-line scenario

For an IMAP client in “online” mode (an IMAP client in offline or disconnected mode would
act very much like a POP client with respect to filtering mail to a local folder), Sieve scripts
would either have to be stored as part of the client preferences, or on a suitable network
cache (ACAP, IMSP, or LDAP) accessible securely to the MUA. In addition to mundane local
folder activities or standard Sieve responses, the client-side Sieve engine would trigger IMAP
actions or commands; a simple example would be setting flags, as described generically in
[MELNIKOV]. In most cases, having a Sieve-aware IMAP server would be preferable,
however.

IMAP events to trigger filtering

One possible use of a Sieve script is to tune a client to respond to specific IMAP activities: e.g.
searching, opening or closing a folder, appending a message with the semantics of a draft
message in mid-composition, etc. Some applications of Sieve to this probably require
extensions, but note that the basic format of the language can describe most of these actions
as a “post-delivery” event.

Cyrusoft’s Mulberry 2.1 has IMAP-aware filters, which can be triggered by or execute IMAP-

related events. Thus it is forward-compatible with a simple Sieve extension to change IMAP
flags as described in [MELNIKOV].

The Sieve Language and Internet Mail Filtering and Delivery 20

Other Processing Scenarios

Administrator-initiated

As described above, one use of Sieve scripts would be as a format for housecleaning-style
activities for privileged administrators: deleting spam after the fact from user’s mailboxes,
aging old messages, and so forth.

Agent-initiated

Agents being used on the system for other purposes, for example, content-indexing
processes, can call Sieve scripts for disposition of copies of messages or be called themselves
as extensions to Sieve. Other forms of agents will want to be Sieve-aware so that the basic

Sieve actions can be integrated with more advanced third-party, yet RFC822-syntax-based,
activities.

The Future: A Sieve Manifesto

We believe that the time is right to adopt an internet-standard mail filtering scheme, and that
Sieve is a sufficient and well-designed basis for that standard. We therefore suggest that
implementers and users of any mail software tool, internet appliance, or related RFC822-
compatible tool consider adopting the following as pillars of the Sieve credo:

All such tools be written in compliance and awareness of RFC 3028, Sieve, A Mail Filtering
Language;

Architecture of such tools take into account potential client/server interactions, the transport
issues and models discussed in this document, and similar issues requisite to making Sieve a
useful part of the internet mail architecture;

Sieve interoperability tests be incorporated into appropriate industry interop events;

Vendors and developers of internet mail tools continue to develop and write extensions to
Sieve to provide additional layers of functionality, both converting existing tools and
providing new ones as the occasion warrants;

Vendors and users co-operate to refine and extend Sieve as a solution to problems in the mail
filtering sphere.

References and Further Information

Sieve web sites

A website on Sieve and related material is maintained by Cyrusoft International, Inc. at

http://ww. cyrusoft.conisieve

Sieve mailing list and archive
Discussions on Sieve at a technical level are currently carried out on the

ietf-nta-filters@nt.org

Mailing list. To join, send a note with the word ‘subscribe’ in the body to:

ietf-nta-filters-request@nt.org

Archives for this mailing list are available via the web at:

http://ww.inc.org/ietf-nta-filters

The Sieve Language and Internet Mail Filtering and Delivery 21

Documents

Internet draft documents are updated frequently. Query the IETF drafts page at http://www.ietf.org with
the keyword ‘sieve’ for the most current list of documents and version numbers. Comments within this
paper are based on the most recent versions available at the time, for which version numbers are detailed

below.
[SHOWALTER]

[IMAIL]

[MARTIN]

[MARTINZ]

[MELNIKOV]

[MURCHISON]

[MURCHISONZ]

[SHOWALTER?]

“Sieve: A Mail Filtering Language”, Tim Showalter. RFC 3028, January,
2001. http://www ietf.org/rfc/rfc3028.txt?nunber=3028

“Standard for the Format of ARPA Internet Text Messages”, Internet
Standard 11 (RFC822). See also revisions of this standard under
DRUMS area working group at ht t p: // www. i et f. org

“A Protocol for Remotely Managing Sieve Scripts”, Tim Martin,
Internet Draft December, 2000. htt p: / / search.ietf.org/internet-
drafts/draft-martin-managesi eve- 02. t xt

“Sieve — An Extension for Providing Instant Notifications”, Tim
Martin, Internet Draft December, 2000.

http://search.ietf.org/internet-drafts/draft-nmartin-sieve-
notify-00.txt

“Sieve — IMAP Flag Extension”, Alexey Melnikov, Internet Draft
October, 2000. http: //search.ietf.org/internet-drafts/draft-
mel ni kov- si eve-i mapf| ags- 04. t xt

“Sieve -- Subaddress Extension”, Ken Murchison. Internet Draft.

September, 2000. http: //search.ietf.org/internet-
drafts/draft-nmurchi son-si eve-subaddr ess-02. t xt

“Sieve — Regular Expression Extension”, Ken Murchison. Internet Draft.
January, 2001. http://search.ietf.org/internet-drafts/draft-
mur chi son-si eve-regex-03. t xt

“Sieve Vacation Extension”, Tim Showalter. Internet Draft. August,
2000. http://search.ietf.org/internet-drafts/draft-
showal t er - si eve-vacation-04. t xt

The Sieve Language and Internet Mail Filtering and Delivery 22

